Dynamics of microvascular oxygen pressure in the rat diaphragm.
نویسندگان
چکیده
The relative amplitudes and rates of increase of muscle blood flow (and O(2) delivery) and O(2) uptake responses determine the O(2) pressure within the muscle microvasculature (Pm(O(2))) across the rest-to-contraction transition. Skeletal muscle function is a primary determinant of pulmonary O(2) uptake kinetics; however, it has never been determined whether the dynamics of muscle Pm(O(2)) are faster in a highly oxidative muscle [e.g., diaphragm (Dia), citrate synthase activity of 39 micromol. min(-1). g(-1)] compared with less oxidative muscles [e.g., spinotrapezius (Spino), citrate synthase activity of 14 micromol. min(-1). g(-1), male Sprague-Dawley rats; Delp MD and Duan C, J Appl Physiol 80: 261-270, 1996]. Phosphorescence quenching techniques (porphyrin dendrimer, R2) were used to determine Pm(O(2)) across the transition to electrically stimulated contractions (1 Hz) within the rat Dia. After a delay of 10.4 +/- 1.3 (SE) s at the beginning of Dia contractions, Pm(O(2)) decreased close to monoexponentially from 42 +/- 2 to 27 +/- 3 Torr (P < 0.05) with an extremely fast time constant of 7.1 +/- 1.1 s. Thus Dia Pm(O(2)) decreased with significantly (P < 0.05) faster kinetics than reported previously for the Spino muscle (delay, 19.2 +/- 2.8 s; time constant Pm(O(2)), 21.7 +/- 2.1 s; Behnke BJ, Kindig CA, Musch TI, Koga S, and Poole DC, Respir Physiol 126: 53-63, 2001). With the use of two specialized muscles with similar fiber-type composition but widely disparate oxidative capacities (Delp MD and Duan C, J Appl Physiol 80: 261-270, 1996), these data demonstrate that Pm(O(2)) kinetics are significantly faster in the highly oxidative Dia compared with the low-oxidative Spino muscle and that this effect is not dependent on muscle fiber-type composition.
منابع مشابه
Molecular Dynamics Simulation of Water Transportation through Aquaporin-4 in Rat Brain Cells
This paper investigates the mechanism of water transportation through aquaporin-4(AQP4) of ratbrain cells by means of molecular dynamics simulation with CHARMM software. The AQP4 wasembedded into a bilayer made of Dimystroilphosphatylcholine (DMPC). The results illustrate thatwater molecules move through AQP4's channel with change of orientation of oxygen of eachwater molecule.
متن کاملEffects of chronic heart failure on microvascular oxygen exchange dynamics in muscles of contrasting fiber type.
UNLABELLED In rat spinotrapezius muscle, chronic heart failure (CHF) speeds microvascular O2 pressure (pO2; index of O2 delivery-to-O2 uptake) dynamics across the rest-contractions transition [Cardiovasc. Res. 56 (2002) 479]. Due to the mosaic nature of this muscle, the effect of CHF on microvascular pO2 dynamics in different fiber types remains unclear. OBJECTIVE Based upon derangements of e...
متن کاملEffects of emphysema on diaphragm microvascular oxygen pressure.
Pulmonary emphysema impairs lung and respiratory muscle function leading to restricted physical capacity and accelerated morbidity and mortality consequent to respiratory muscle failure. In the absence of direct evidence, an O2 supply-demand imbalance within the diaphragm and other respiratory muscles in emphysema has been considered the most likely explanation for this failure. To test this hy...
متن کاملDesign of High Sensitivity and Linearity Microelectromechanical Systems Capacitive Tire Pressure Sensor using Stepped Membrane
This paper is focused on a novel design of stepped diaphragm for MEMS capacitive pressure sensor used in tire pressure monitoring system. The structure of sensor diaphragm plays a key role for determining the sensitivity of the sensor and the non-linearity of the output.First the structures of two capacitive pressure sensors with clamped square flatdiaphragms, with different thicknesses are inv...
متن کاملPerformance study of a diaphragm type crankcase pressure control valve
Pressure control valve (PCV) is implemented in internal combustion engine to regulate crankcase pressure. In this study, the performance of a diaphragm PCV valve is investigated numerically and experimentally. Firstly, numerical simulation is carried out using commercial code to predict the flow and pressure distribution inside the valve. Furthermore, downstream and upstream pressure of the val...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 93 1 شماره
صفحات -
تاریخ انتشار 2002